Venn diagram:
U: universal set.
A : subset of U. $A \subseteq U$
A^{\prime} : subset of U not including $A . \quad A^{\prime}=U-A$

B subset of $A, B \subseteq A$:
all elements of B are in A, therefor:
$A \cup B=A$

Intersection or overlap, $\mathrm{A} \cap B$, (A AND B)

Union, or sum: $A \cup B,(A O R B)$

Mutually exclusive; no common element;

$$
A \cap B=0
$$

De Morgan's laws:

$$
(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}
$$

De Morgan's laws:
$(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$

Rule:

$$
\mathrm{A} \cup \mathrm{~B}=\mathrm{A}+\mathrm{B}-\mathrm{A} \cap B, \text { therefore: } \quad \mathrm{A} \cap \mathrm{~B}=\mathrm{A}+\mathrm{B}-\mathrm{A} \cup B
$$

Continue in Page 2

Probability:

Theoretical Probability is the ratio: $\quad \mathrm{P}(\mathrm{A})=\frac{N(A)}{N(U)}=\frac{\text { Number of favorite outcomes }}{\text { Number of all possible outcomes }}$

Complement (Probability of "not A " happening):
$\mathrm{P}\left(\mathrm{A}^{\prime}\right)=1-P(A)$

Compound events probability: $\quad P(A$ and $B)=P(\mathrm{~A}) \times \mathrm{P}(\mathrm{B})$

$$
P(A \text { or } B)=P(\mathrm{~A})+\mathrm{P}(\mathrm{~B})
$$

Important note: In logic "And" means multiply probabilities, "OR" means add probabilities.

Combined Probability:
Union: $\quad P(A \cup B)$
Intersection: $\quad P(A \cap B)$
Rule:
$\mathrm{P}(\mathrm{A} \cup B)=P(A$ or $B)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
Mutually exclusive events: $\quad \mathrm{P}(\mathrm{A} \cap B)=0 \quad$ Then: $\quad \mathrm{P}(\mathrm{A} \cup B)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$

Expected value or Expectancy: probability of an event out of n trials: $E(x)=\mu=n . P(x)$
$\begin{array}{ll}\text { Conditional probability: } & P(A \mid B)=\frac{P(A \cap B)}{P(B)} \\ \text { Independent probability: } & P(A \cap B)=P(A \text { and } B)=P(A) \times P(B)\end{array}$

Bayes' Law: $\quad \mathrm{P}(\mathrm{B} \mid \mathrm{A})=\frac{\mathrm{P}(\mathrm{B}) \cdot \mathrm{P}(\mathrm{A} \mid \mathrm{B})}{\mathrm{P}(\mathrm{B}) \cdot \mathrm{P}(\mathrm{A} \mid \mathrm{B})+\mathrm{P}(\mathrm{B} \prime) \cdot \mathrm{P}\left(\mathrm{A} \mid \mathrm{B}^{\prime}\right)}$

