

Venn diagram:

U: universal set.	
A: subset of U. A \subseteq U	
A': subset of U not including A.	A' = U – A

B subset of A, $B \subseteq A$: all elements of B are in A, therefor: $A \cup B = A$

Union, or sum: $A \cup B$, (A OR B)

Mutually exclusive; no common element; $A \cap B = 0$

De Morgan's laws: $(A \cup B)' = A' \cap B'$

De Morgan's laws: $(A \cap B)' = A' \cup B'$

Rule:

 $A \cup B = A + B - A \cap B$, therefore: $A \cap B = A + B - A \cup B$

Continue in Page 2

Α' Α

Phone: 1 604 710-9602

WWW.e-tutorpro.com

P(A') = 1 - P(A)

Probability:

Theoretical Probability is the ratio: $P(A) = \frac{N(A)}{N(U)} = \frac{Number of favorite outcomes}{Number of all possible outcomes}$

Complement (Probability of "not A" happening):

Compound events probability: $P(A \text{ and } B) = P(A) \times P(B)$

$$P(A \text{ or } B) = P(A) + P(B)$$

Important note: In logic "And" means multiply probabilities, "OR" means add probabilities.

Combined Probability:

Union:	$P(A \cup B)$		
Intersection:	P (A ∩ B)		
Rule:	$P(A \cup B) = P(A \cup B)$	(ar B) = P(A)) + P (B) – P (A ∩ B)
Mutually exclusive events:	$P\left(A\cap B\right)=0$	Then:	$P(A \cup B) = P(A) + P(B)$

Expected value or Expectancy: probability of an event out of n trials: $E(x) = \mu = n \cdot P(x)$

Conditional probability: $P(A | B) = \frac{P(A \cap B)}{P(B)}$ Independent probability: $P(A \cap B) = P(A \text{ and } B) = P(A) \times P(B)$

Bayes' Law: $P(B | A) = \frac{P(B) \cdot P(A | B)}{P(B) \cdot P(A | B) + P(B') \cdot P(A | B')}$

2/2